980 Unique Paths III¶
On a 2-dimensional grid, there are 4 types of squares:
- 1 represents the starting square. There is exactly one starting square.
- 2 represents the ending square. There is exactly one ending square.
- 0 represents empty squares we can walk over.
- 1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
:::tip Note: 1 <= grid.length \* grid[0].length <= 20
count how many empty blocks there are and try all possible paths to end point and check whether we visited every empty blocks or not. :::
DFS¶
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& grid) {
int sx = -1;
int sy = -1;
int n = 1;
for (int i = 0; i < grid.size(); ++i)
for (int j = 0; j < grid[0].size(); ++j)
if (grid[i][j] == 0) ++n;
else if (grid[i][j] == 1) { sx = j; sy = i; }
return dfs(grid, sx, sy, n);
}
private:
int dfs(vector<vector<int>>& grid, int x, int y, int n) {
if (x < 0 || x == grid[0].size() ||
y < 0 || y == grid.size() ||
grid[y][x] == -1) return 0;
if (grid[y][x] == 2) return n == 0;
grid[y][x] = -1;
int paths = dfs(grid, x + 1, y, n - 1) +
dfs(grid, x - 1, y, n - 1) +
dfs(grid, x, y + 1, n - 1) +
dfs(grid, x, y - 1, n - 1);
grid[y][x] = 0;
return paths;
};
};
DP¶
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& grid) {
const int n = grid.size();
const int m = grid[0].size();
const vector<int> dirs{-1, 0, 1, 0, -1};
vector<vector<vector<short>>> cache(n, vector<vector<short>>(m, vector<short>(1 << n * m, -1)));
int sx = -1;
int sy = -1;
int state = 0;
auto key = [m](int x, int y) { return 1 << (y * m + x); };
function<short(int, int, int)> dfs = [&](int x, int y, int state) {
if (cache[y][x][state] != -1) return cache[y][x][state];
if (grid[y][x] == 2) return static_cast<short>(state == 0);
int paths = 0;
for (int i = 0; i < 4; ++i) {
const int tx = x + dirs[i];
const int ty = y + dirs[i + 1];
if (tx < 0 || tx == m || ty < 0 || ty == n || grid[ty][tx] == -1) continue;
if (!(state & key(tx, ty))) continue;
paths += dfs(tx, ty, state ^ key(tx, ty));
}
return cache[y][x][state] = paths;
};
for (int y = 0; y < n; ++y)
for (int x = 0; x < m; ++x)
if (grid[y][x] == 0 || grid[y][x] == 2) state |= key(x, y);
else if (grid[y][x] == 1) { sx = x; sy = y; }
return dfs(sx, sy, state);
}
};