Skip to content

980 Unique Paths III

On a 2-dimensional grid, there are 4 types of squares:

  • 1 represents the starting square. There is exactly one starting square.
  • 2 represents the ending square. There is exactly one ending square.
  • 0 represents empty squares we can walk over.
  • 1 represents obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example 1:

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:

1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

Example 2:

Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:

1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

Example 3:

Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.

:::tip Note: 1 <= grid.length \* grid[0].length <= 20 count how many empty blocks there are and try all possible paths to end point and check whether we visited every empty blocks or not. :::

alt

DFS

class Solution {
public:
  int uniquePathsIII(vector<vector<int>>& grid) {
    int sx = -1;
    int sy = -1;
    int n = 1;
    for (int i = 0; i < grid.size(); ++i)
      for (int j = 0; j < grid[0].size(); ++j)
        if (grid[i][j] == 0) ++n;
        else if (grid[i][j] == 1) { sx = j; sy = i; }
    return dfs(grid, sx, sy, n);
  }
private:
  int dfs(vector<vector<int>>& grid, int x, int y, int n) {
    if (x < 0 || x == grid[0].size() ||
        y < 0 || y == grid.size() ||
        grid[y][x] == -1) return 0;
    if (grid[y][x] == 2) return n == 0;
    grid[y][x] = -1;
    int paths = dfs(grid, x + 1, y, n - 1) +
                dfs(grid, x - 1, y, n - 1) +
                dfs(grid, x, y + 1, n - 1) +
                dfs(grid, x, y - 1, n - 1);
    grid[y][x] = 0;
    return paths;
  };
};

DP

class Solution {
public:
  int uniquePathsIII(vector<vector<int>>& grid) {
    const int n = grid.size();
    const int m = grid[0].size();
    const vector<int> dirs{-1, 0, 1, 0, -1};

    vector<vector<vector<short>>> cache(n, vector<vector<short>>(m, vector<short>(1 << n * m, -1)));
    int sx = -1;
    int sy = -1;
    int state = 0;

    auto key = [m](int x, int y) { return 1 << (y * m + x); };

    function<short(int, int, int)> dfs = [&](int x, int y, int state) {
      if (cache[y][x][state] != -1) return cache[y][x][state];
      if (grid[y][x] == 2) return static_cast<short>(state == 0);
      int paths = 0;
      for (int i = 0; i < 4; ++i) {
        const int tx = x + dirs[i];
        const int ty = y + dirs[i + 1];
        if (tx < 0 || tx == m || ty < 0 || ty == n || grid[ty][tx] == -1) continue;
        if (!(state & key(tx, ty))) continue;
        paths += dfs(tx, ty, state ^ key(tx, ty));
      }
      return cache[y][x][state] = paths;
    };

    for (int y = 0; y < n; ++y)
      for (int x = 0; x < m; ++x)
        if (grid[y][x] == 0 || grid[y][x] == 2) state |= key(x, y);
        else if (grid[y][x] == 1) { sx = x; sy = y; }
    return dfs(sx, sy, state);
  }
};