437 Path Sum III¶
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example: root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int pathSum(TreeNode root, int sum) {
HashMap<Integer, Integer> sums = new HashMap<Integer, Integer>();
sums.put(0, 1);
int[] res = new int[1];
process(root, res, 0, sum, sums);
return res[0];
}
private void process(TreeNode node, int[] res, int currSum, int sum, HashMap<Integer, Integer> sums) {
if (node == null) {
return;
}
int newSum = currSum + node.val;
if (sums.containsKey(newSum - sum)) {
res[0] += sums.get(newSum - sum);
}
if (!sums.containsKey(newSum)) {
sums.put(newSum, 0);
}
sums.put(newSum, sums.get(newSum) + 1);
process(node.left, res, newSum, sum, sums);
process(node.right, res, newSum, sum, sums);
sums.put(newSum, sums.get(newSum) - 1);
}
}
Solution 1: Recursion¶
Time complexity: O(n^2) Space complexity: O(n)
// Running time: 21 ms
class Solution {
public:
int pathSum(TreeNode* root, int sum) {
if (!root) return 0;
return numberOfPaths(root, sum) + pathSum(root->left, sum) + pathSum(root->right, sum);
}
private:
int numberOfPaths(TreeNode* root, int left) {
if (!root) return 0;
left -= root->val;
return (left == 0 ? 1 : 0) + numberOfPaths(root->left, left) + numberOfPaths(root->right, left);
}
};
Solution 2: Running Prefix Sum¶
Same idea to 560. Subarray Sum Equals K
Time complexity: O(n) Space complexity: O(h)
// Running time: 13 ms (beats 97.74%)
public:
int pathSum(TreeNode* root, int sum) {
ans_ = 0;
sums_ = {{0, 1}};
pathSum(root, 0, sum);
return ans_;
}
private:
int ans_;
unordered_map<int, int> sums_;
void pathSum(TreeNode* root, int cur, int sum) {
if (!root) return;
cur += root->val;
ans_ += sums_[cur - sum];
++sums_[cur];
pathSum(root->left, cur, sum);
pathSum(root->right, cur, sum);
--sums_[cur];
}
};