Skip to content

113 Path Sum II

Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum.

For example: Given the below binary tree and sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1

return

[
   [5,4,11,2],
   [5,8,4,5]
]

:::tip Idea Recursion :::

Solution:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<List<Integer>> pathSum(TreeNode root, int sum) {
        List<List<Integer>> result = new LinkedList<List<Integer>>();
        process(root, sum, new LinkedList<Integer>(), result);
        return result;
    }
    private void process(TreeNode node, int sum, List<Integer> curr, List<List<Integer>> result){
        if (node == null) {
            return;
        }
        curr.add(node.val);
        if (node.left == null && node.right == null & node.val == sum) {
            result.add(new LinkedList<Integer>(curr));
        }
        process(node.left, sum - node.val, curr, result);
        process(node.right, sum - node.val, curr, result);
        curr.remove(curr.size() - 1);
    }
}
// Runtime: 9 ms
class Solution {
public:
    vector<vector<int>> pathSum(TreeNode* root, int sum) {
        vector<vector<int>> ans;
        vector<int> curr;
        pathSum(root, sum, curr, ans);
        return ans;
    }
private:
    void pathSum(TreeNode* root, int sum, vector<int>& curr, vector<vector<int>>& ans) {
        if(root==nullptr) return;
        if(root->left==nullptr && root->right==nullptr) {
            if(root->val == sum) {
                ans.push_back(curr);
                ans.back().push_back(root->val);
            }
            return;
        }

        curr.push_back(root->val);
        int new_sum = sum - root->val;
        pathSum(root->left, new_sum, curr, ans);
        pathSum(root->right, new_sum, curr, ans);
        curr.pop_back();
    }
};