Command¶
- Command
- UML class diagram
- Participants
- Structural code in C# .{10}
- Real-world code in C# .{10}
- .NET Optimized code in C# .{10}
Summary: Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or log requests, and support undoable operations.
Frequency of use: Medium high
UML class diagram¶
Participants¶
The classes and objects participating in this pattern are:
- Command (
Command
) - declares an interface for executing an operation
- ConcreteCommand (
CalculatorCommand
) - defines a binding between a Receiver object and an action
- implements Execute by invoking the corresponding operation(s) on Receiver
- Client (
CommandApp
) - creates a ConcreteCommand object and sets its receiver
- Invoker (
User
) - asks the command to carry out the request
- Receiver (
Calculator
) - knows how to perform the operations associated with carrying out the request.
Structural code in C# .{10}¶
This structural code demonstrates the Command pattern which stores requests as objects allowing clients to execute or playback the requests.
using System;
namespace DoFactory.GangOfFour.Command.Structural
{
/// <summary>
/// MainApp startup class for Structural
/// Command Design Pattern.
/// </summary>
class MainApp
{
/// <summary>
/// Entry point into console application.
/// </summary>
static void Main()
{
// Create receiver, command, and invoker
Receiver receiver = new Receiver();
Command command = new ConcreteCommand(receiver);
Invoker invoker = new Invoker();
// Set and execute command
invoker.SetCommand(command);
invoker.ExecuteCommand();
// Wait for user
Console.ReadKey();
}
}
/// <summary>
/// The 'Command' abstract class
/// </summary>
abstract class Command
{
protected Receiver receiver;
// Constructor
public Command(Receiver receiver)
{
this.receiver = receiver;
}
public abstract void Execute();
}
/// <summary>
/// The 'ConcreteCommand' class
/// </summary>
class ConcreteCommand : Command
{
// Constructor
public ConcreteCommand(Receiver receiver) :
base(receiver)
{
}
public override void Execute()
{
receiver.Action();
}
}
/// <summary>
/// The 'Receiver' class
/// </summary>
class Receiver
{
public void Action()
{
Console.WriteLine("Called Receiver.Action()");
}
}
/// <summary>
/// The 'Invoker' class
/// </summary>
class Invoker
{
private Command _command;
public void SetCommand(Command command)
{
this._command = command;
}
public void ExecuteCommand()
{
_command.Execute();
}
}
}
Output¶
Real-world code in C# .{10}¶
This real-world code demonstrates the Command pattern used in a simple calculator with unlimited number of undo's and redo's. Note that in C# the word 'operator' is a keyword. Prefixing it with '@' allows using it as an identifier.
using System;
using System.Collections.Generic;
namespace DoFactory.GangOfFour.Command.RealWorld
{
/// <summary>
/// MainApp startup class for Real-World
/// Command Design Pattern.
/// </summary>
class MainApp
{
/// <summary>
/// Entry point into console application.
/// </summary>
static void Main()
{
// Create user and let her compute
User user = new User();
// User presses calculator buttons
user.Compute('+', 100);
user.Compute('-', 50);
user.Compute('*', 10);
user.Compute('/', 2);
// Undo 4 commands
user.Undo(4);
// Redo 3 commands
user.Redo(3);
// Wait for user
Console.ReadKey();
}
}
/// <summary>
/// The 'Command' abstract class
/// </summary>
abstract class Command
{
public abstract void Execute();
public abstract void UnExecute();
}
/// <summary>
/// The 'ConcreteCommand' class
/// </summary>
class CalculatorCommand : Command
{
private char _operator;
private int _operand;
private Calculator _calculator;
// Constructor
public CalculatorCommand(Calculator calculator,
char @operator, int operand)
{
this._calculator = calculator;
this._operator = @operator;
this._operand = operand;
}
// Gets operator
public char Operator
{
set { _operator = value; }
}
// Get operand
public int Operand
{
set { _operand = value; }
}
// Execute new command
public override void Execute()
{
_calculator.Operation(_operator, _operand);
}
// Unexecute last command
public override void UnExecute()
{
_calculator.Operation(Undo(_operator), _operand);
}
// Returns opposite operator for given operator
private char Undo(char @operator)
{
switch (@operator)
{
case '+': return '-';
case '-': return '+';
case '*': return '/';
case '/': return '*';
default: throw new
ArgumentException("@operator");
}
}
}
/// <summary>
/// The 'Receiver' class
/// </summary>
class Calculator
{
private int _curr = 0;
public void Operation(char @operator, int operand)
{
switch (@operator)
{
case '+': _curr += operand; break;
case '-': _curr -= operand; break;
case '*': _curr *= operand; break;
case '/': _curr /= operand; break;
}
Console.WriteLine(
"Current value = {0,3} (following {1} {2})",
_curr, @operator, operand);
}
}
/// <summary>
/// The 'Invoker' class
/// </summary>
class User
{
// Initializers
private Calculator _calculator = new Calculator();
private List<Command> _commands = new List<Command>();
private int _current = 0;
public void Redo(int levels)
{
Console.WriteLine("\n---- Redo {0} levels ", levels);
// Perform redo operations
for (int i = 0; i < levels; i++)
{
if (_current < _commands.Count - 1)
{
Command command = _commands[_current++];
command.Execute();
}
}
}
public void Undo(int levels)
{
Console.WriteLine("\n---- Undo {0} levels ", levels);
// Perform undo operations
for (int i = 0; i < levels; i++)
{
if (_current > 0)
{
Command command = _commands[--_current] as Command;
command.UnExecute();
}
}
}
public void Compute(char @operator, int operand)
{
// Create command operation and execute it
Command command = new CalculatorCommand(
_calculator, @operator, operand);
command.Execute();
// Add command to undo list
_commands.Add(command);
_current++;
}
}
}
Output¶
Current value = 100 (following + 100)
Current value = 50 (following - 50)
Current value = 500 (following * 10)
Current value = 250 (following / 2)
---- Undo 4 levels
Current value = 500 (following * 2)
Current value = 50 (following / 10)
Current value = 100 (following + 50)
Current value = 0 (following - 100)
---- Redo 3 levels
Current value = 100 (following + 100)
Current value = 50 (following - 50)
Current value = 500 (following * 10)
.NET Optimized code in C# .{10}¶
using System;
using System.Collections.Generic;
namespace DoFactory.GangOfFour.Command.NETOptimized
{
/// <summary>
/// MainApp startup class for .NET optimized
/// Command Design Pattern.
/// </summary>
class MainApp
{
/// <summary>
/// Entry point into console application.
/// </summary>
static void Main()
{
// Create user and let her compute
var user = new User();
// Issue several compute commands
user.Compute('+', 100);
user.Compute('-', 50);
user.Compute('*', 10);
user.Compute('/', 2);
// Undo 4 commands
user.Undo(4);
// Redo 3 commands
user.Redo(3);
// Wait for user
Console.ReadKey();
}
}
/// <summary>
/// The 'Command' interface
/// </summary>
interface ICommand
{
void Execute();
void UnExecute();
}
/// <summary>
/// The 'ConcreteCommand' class
/// </summary>
class CalculatorCommand : ICommand
{
private char _operator;
private int _operand;
private Calculator _calculator;
// Constructor
public CalculatorCommand(Calculator calculator,
char @operator, int operand)
{
this._calculator = calculator;
this._operator = @operator;
this._operand = operand;
}
// Sets operator
public char Operator
{
set { _operator = value; }
}
// Sets operand
public int Operand
{
set { _operand = value; }
}
// Execute command
public void Execute()
{
_calculator.Operation(_operator, _operand);
}
// Unexecute command
public void UnExecute()
{
_calculator.Operation(Undo(_operator), _operand);
}
// Return opposite operator for given operator
private char Undo(char @operator)
{
switch (@operator)
{
case '+': return '-';
case '-': return '+';
case '*': return '/';
case '/': return '*';
default: throw new
ArgumentException("@operator");
}
}
}
/// <summary>
/// The 'Receiver' class
/// </summary>
class Calculator
{
private int _current = 0;
// Perform operation for given operator and operand
public void Operation(char @operator, int operand)
{
switch (@operator)
{
case '+': _current += operand; break;
case '-': _current -= operand; break;
case '*': _current *= operand; break;
case '/': _current /= operand; break;
}
Console.WriteLine(
"Current value = {0,3} (following {1} {2})",
_current, @operator, operand);
}
}
/// <summary>
/// The 'Invoker' class
/// </summary>
class User
{
private Calculator _calculator = new Calculator();
private List<ICommand> _commands = new List<ICommand>();
private int _current = 0;
// Redo original commands
public void Redo(int levels)
{
Console.WriteLine("\n---- Redo {0} levels ", levels);
// Perform redo operations
for (int i = 0; i < levels; i++)
{
if (_current < _commands.Count - 1)
{
_commands[_current++].Execute();
}
}
}
// Undo prior commands
public void Undo(int levels)
{
Console.WriteLine("\n---- Undo {0} levels ", levels);
// Perform undo operations
for (int i = 0; i < levels; i++)
{
if (_current > 0)
{
_commands[--_current].UnExecute();
}
}
}
// Compute new value given operator and operand
public void Compute(char @operator, int operand)
{
// Create command operation and execute it
ICommand command = new CalculatorCommand(
_calculator, @operator, operand);
command.Execute();
// Add command to undo list
_commands.Add(command);
_current++;
}
}
}